metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christian Näther* and Inke Jeß

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.036 wR factor = 0.100 Data-to-parameter ratio = 21.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexa- μ_2 -chloro-tetrakis(2-ethylpyrazine-*N*)- μ_4 -oxo-tetracopper(II)

In the crystal structure of the title compound, $[Cu_4Cl_6O(C_6H_8N_2)_4]$, Cu_4 tetrahedra are found which are centred by an interstitial O atom. Each edge of the Cu_4 tetrahedron is bridged by a chloro ligand. The copper(II) cations are fourfold coordinated by one O atom, two chloro ligands and one N atom of the 2-ethylpyrazine ligand within a distorted tetrahedron. The $Cu_4Cl_6O(C_6H_8N_2)_4$ units are located in general positions.

Received 20 November 2001 Accepted 28 November 2001 Online 8 December 2001

Comment

This work is a part of a project dealing with the synthesis, structures and properties of coordination polymers based on copper halides and multidentate amino ligands (Näther *et al.*, 2001; Näther & Greve, 2001; Näther & Jess, 2001). Crystals of the title compound, (I), were obtained by the reaction of copper(I) chloride with 2-ethylpyrazine in acetonitrile.

In the crystal structure of the title compound, four copper(II) cations form a slightly distorted tetrahedron which is centred by an interstitial O atom. The Cu–O bond lengths are between 1.895 (2) and 1.907 (2) Å, and the Cu–O–Cu angles between 108.30 (8) and 110.22 (8)°. The edges of the Cu₄ tetrahedron are each bridged by μ_2 -chloro ligands. The chloro bridges are not symmetrical, with Cu–Cl bond lengths between 2.3485 (8) and 2.4591 (8) Å. The copper coordination is completed by a 2-ethylpyrazine ligand which is coordinated by the N atom which is bonded through the ethyl group. The Cu–N bond lengths are between 1.977 (3) and 1.987 (2) Å. Presumably due to steric repulsion the second N atom of the 2-ethylpyrazine ligand is not involved in copper coordination.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

m4

Figure 1

The crystal structure of the title compound with atom labelling and with isplacement ellipsoids drawn at the 50% probability level.

Bond lengths and angles are comparable to those in other amine-coordinated Cu₄Cl₆O clusters, such as μ_4 -oxo-hexakis-(μ_2 -chloro)tetrakis(nicotine-*N*)tetracopper(II) (Haendler, 1990), μ_4 -oxo-hexakis(μ_2 -chloro)tetrakis(acetonitrile-*N*)tetracopper(II) acetonitrile solvate (Hiller *et al.*, 1990), μ_4 oxo-hexakis(μ_2 -chloro)tetrakis(imidazole-*N*)tetracopper(II) (Atria *et al.*, 1999) and μ_4 -oxo-hexakis(μ_2 -chloro)tris(*N*methyl-2-pyrrolidinone-*O*)aquatetracopper(II) (Churchill & Rotella, 1979).

Experimental

Copper(I) chloride (98.0 mg, 1 mmol; freshly prepared according to Gmelin, 1958) and 2-ethylpyrazine (216.3 mg, 2 mmol; ACROS) were mixed in 2 ml acetonitrile in a glass container. After mixing the components, a red precipitate of CuCl(2-ethylpyrazine) was initially formed which transformed into large yellow crystals of the title compound over a period of two days.

Crystal data

$[Cu_4Cl_6O(C_6H_8N_2)_4]$	$D_x = 1.739 \text{ Mg m}^{-3}$		
$M_r = 915.44$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/n$	Cell parameters from 8000		
a = 13.1203 (10) Å	reflections		
b = 13.0461 (7) Å	$\theta = 15-24^{\circ}$		
c = 20.7233 (16) Å	$\mu = 2.89 \text{ mm}^{-1}$		
$\beta = 99.718(9)^{\circ}$	T = 293 (2) K		
V = 3496.3 (4) Å ³	Block, yellow		
Z = 4	$0.14 \times 0.10 \times 0.06 \text{ mm}$		
Data collection			
Stoe Imaging Plate Diffraction	8309 independent reflections		
System diffractometer	6876 reflections with $I > 2\sigma(I)$		
\$\$ scans	$R_{\rm int} = 0.035$		
Absorption correction: numerical	$\theta_{\rm max} = 28.1^{\circ}$		
(X-SHAPE; Stoe & Cie, 1998)	$h = -17 \rightarrow 17$		
$T_{\rm min} = 0.717, T_{\rm max} = 0.849$	$k = -16 \rightarrow 17$		
30661 measured reflections	$l = -27 \rightarrow 27$		

Refinement

9

8

E

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.036$	
$vR(F^2) = 0.100$	
S = 1.03	
309 reflections	
89 parameters	
H-atom parameters constrained	

$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.066P)^{2} + 1.0923P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.57 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.56 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0064 (5)

Table 1 Selected geometric parameters (Å, °).

Cu1-O1	1.9073 (18)	Cu3-O1	1.8974 (16)
Cu1-N2	1.986 (2)	Cu3-N6	1.978 (2)
Cu1-Cl1	2.3555 (8)	Cu3-Cl3	2.3485 (8)
Cu1-Cl5	2.4005 (7)	Cu3-Cl5	2.4196 (8)
Cu1-Cl4	2.4438 (7)	Cu3-Cl2	2.4591 (8)
Cu2-O1	1.8946 (17)	Cu4-O1	1.9010 (17)
Cu2-N4	1.987 (2)	Cu4-N8	1.977 (2)
Cu2-Cl2	2.3765 (7)	Cu4-Cl4	2.3835 (8)
Cu2-Cl6	2.4199 (8)	Cu4-Cl6	2.3968 (8)
Cu2-Cl1	2.4314 (9)	Cu4-Cl3	2.4325 (8)
O1-Cu1-N2	175.83 (8)	O1-Cu3-Cl2	82.84 (5)
O1-Cu1-Cl1	86.05 (5)	N6-Cu3-Cl2	95.05 (7)
N2-Cu1-Cl1	95.29 (7)	Cl3-Cu3-Cl2	126.99 (4)
O1-Cu1-Cl5	84.77 (5)	Cl5-Cu3-Cl2	104.57 (3)
N2-Cu1-Cl5	97.31 (7)	O1-Cu4-N8	174.92 (9)
Cl1-Cu1-Cl5	130.20 (3)	O1-Cu4-Cl4	85.33 (6)
O1-Cu1-Cl4	83.51 (5)	N8-Cu4-Cl4	89.72 (7)
N2-Cu1-Cl4	92.37 (7)	O1-Cu4-Cl6	84.87 (5)
Cl1-Cu1-Cl4	118.00 (3)	N8-Cu4-Cl6	97.38 (7)
Cl5-Cu1-Cl4	109.37 (3)	Cl4-Cu4-Cl6	128.47 (3)
O1-Cu2-N4	177.53 (8)	O1-Cu4-Cl3	83.70 (5)
O1-Cu2-Cl2	85.20 (5)	N8-Cu4-Cl3	99.66 (7)
N4-Cu2-Cl2	97.03 (7)	Cl4-Cu4-Cl3	118.08 (3)
O1-Cu2-Cl6	84.36 (5)	Cl6-Cu4-Cl3	110.87 (4)
N4-Cu2-Cl6	93.34 (7)	Cu1-Cl1-Cu2	80.13 (2)
Cl2-Cu2-Cl6	132.44 (3)	Cu2-Cl2-Cu3	79.59 (2)
O1-Cu2-Cl1	84.18 (6)	Cu3-Cl3-Cu4	80.54 (2)
N4-Cu2-Cl1	95.83 (8)	Cu4-Cl4-Cu1	80.39 (2)
Cl2-Cu2-Cl1	114.02 (3)	Cu1-Cl5-Cu3	80.64 (2)
Cl6-Cu2-Cl1	110.85 (3)	Cu4-Cl6-Cu2	80.53 (2)
O1-Cu3-N6	177.38 (10)	Cu2-O1-Cu3	109.45 (8)
O1-Cu3-Cl3	86.14 (5)	Cu2-O1-Cu4	110.22 (8)
N6-Cu3-Cl3	93.91 (7)	Cu3-O1-Cu4	108.94 (8)
O1-Cu3-Cl5	84.44 (6)	Cu2-O1-Cu1	108.30 (8)
N6-Cu3-Cl5	97.62 (8)	Cu3-O1-Cu1	110.12 (9)
Cl3-Cu3-Cl5	125.72 (3)	Cu4 - O1 - Cu1	109.80 (8)

H atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5U_{eq}(O \text{ or } C_{methyl})]$ using a riding model.

Data collection: *IPDS Program Package* (Stoe & Cie, 1998); cell refinement: *IPDS Program Package*; data reduction: *IPDS Program Package*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *CIFTAB* in *SHELXL*97.

This work is supported by the state of Schleswig-Holstein. We are very thankful to Professor Dr Wolfgang Bensch for financial support and the opportunity to use his experimental equipment.

References

- Atria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). *Inorg. Chem.* 38, 5681–5685.
- Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Churchill, M. R. & Rotella, F. J. (1979). Inorg. Chem. 3, 853-860.
- Gmelin (1958). Gemlins Handbook, 8. Auflage, Copper, Part B. pp. 346–347. Weinheim: Verlag Chemie.
- Haendler, H. M. (1990). Acta Cryst. C46, 2054-2057.
- Hiller, W., Zinn, A. & Dehnicke, K. (1990). Z. Naturforsch. Teil B, 45, 1593-1596.
- Näther, C. & Greve, J. (2001). Acta Cryst. C57, 377-378.
- Näther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897-910.
- Näther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017-1022.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). X-SHAPE (Version 1.03) and IPDS Program Package (Version 2.89). Stoe & Cie, Darmstadt, Germany.